
View Factors with Charm – Chare Types

View Factors and Chaparral

Parallel Calculation of the Radiation View Factor Matrix Using Charm++
William Rosenberger Mentor: Neil Carlson

Introduction
Chaparral is a library designed to solve radiation heat transfer problems across large,
three-dimensional meshes. A major portion of this calculation involves comparing each
pair of faces in the mesh to find the View Factor (VF) matrix.

The calculation of each element in the VF matrix can be easily distributed because each
view factor depends only on the two faces it corresponds to (except for possible
obstructions). However, in the current implementation, the data for the full mesh must be
loaded into each process. We explore an alternative scheme using Charm++ for
distributing the mesh data that will eliminate the need for replicating the mesh.

View Factor (VF): Describes how much of the heat radiated
from one facet impacts another. For the sake of simplifying
this study, we assume there are no obstructions between
the facets. The view factor between facet i and facet j is Fij:

Charm++
Charm++: A parallel programming framework that encourages developers to break their
problem into many small pieces that can be distributed throughout the system.

Chare: Lightweight, transportable objects that are responsible for computing a small
portion of the problem. Communicate with each other via remote procedure calls.

Charm++ Runtime System (RTS): The environment in which Charm++ programs run.
Manages messages between chares, decides which messages should be handled next,
and manages load balancing across the physical machine.

Over-decomposition: The design approach of splitting a problem into as many small
tasks as possible, then allowing the RTS to decide which tasks should be allowed to run.
This ensures there is always something for the RTS to schedule – hides the
communication cost.

View Factors with Charm – Naïve Approach

Chare Interaction

Conclusions
In the current MPI implementation of Chaparral, the mesh file needs to be replicated to
each processor. We have created a framework using Charm++ that allows distributed
access to a single instance of the mesh from any process in the program, allowing for
better scaling on many-core architectures.

The approaches outlined here assume each chare instance holds only one face in the
mesh. While this has allowed us to experiment with the Charm++ system and improve
our understanding of how the chares interact with each other, the overhead of each
chare instance is overwhelming the useful work each chare does. One approach that
would be useful to examine would be to have each chare responsible for a patch of
faces, rather than just one. By using this patched approach, the overall overhead for the
program could be decreased.

i

j

Fij

Enclosure Mesh

VF Matrix: A matrix describing the view
factor for each pair of faces in the mesh. The
memory required for this matrix is at least
O(n2), regardless of the approach. This
overhead could be decreased by writing the
results out to a file as they become available.
Because of this, our analyses concentrate on
additional memory.
Parallelization: Chaparral’s algorithm for
calculating the VF matrix requires that the
data be copied to every process. That is, the
total memory usage across the entire VF
matrix calculation excluding the VF matrix
itself is:

O(n*p)

Project goal: Avoid replicating data.

R
an

k
3

View Factor Matrix

Facets

LA-UR-17-27033

Message
Queues

P1

P2

PN

.	.	.	

Program
Execution

Physical
Machine

Chare
Types

Runtime
System

•  Facet chares: Read in a facet and send the
facet data to every VF chare that needs it.

•  VF chares: When the data for both facet chares
are received, calculate the view factor for that
pair.

•  On startup: Each facet chare sends 2*n
messages, each message containing the data
for its face.

These messages are queued in Charm++’s RTS
until a processor is available to calculate the VF
for the corresponding faces.

•  Memory usage: There are n facets, each of
which send 2*n messages. This means that the
memory usage excluding the VF matrix itself is:

O(n2)

How can the VF matrix calculation take advantage of over-decomposition?
There are two entities involved in Chaparral’s
calculation of the view factor matrix: facets and view
factor scalars. The design for both of our
approaches is based around these entities.

Three types of chares:

•  Facet chare – one-dimensional array, each
element corresponding to a facet in the mesh.

•  VF chare – two-dimensional array, each element
corresponding to the view factor between two of
the facet chares.

•  Aggregator chare – merges each row of VF
chares into a single array.

n facets, n2 view factors

VF Chares

Facet Chares

View Factors with Charm – Better Approach
•  Facet chares: Read in a facet and wait for requests for that data from other chares.

•  VF chares: Request data from both facet chares. When it is received, calculate the
view factor and free the memory used by the messages.

R
an

k
2

R
an

k
1

•  On startup: The Charm++ RTS selects as
many VF chares to run as there are
processes. Each of these VF chares send a
message to their respective facet chares,
then fall asleep until those data are
received. While they are asleep, the RTS
selects other chares to run in their stead.

•  Memory usage: There are n facets chares
in the system. At any point in time, the RTS
is transporting 2*p messages containing
facet data. This means that, aside from the
memory required to hold the VF matrix itself,
the memory overhead is:

O(n + p)

Fij

i j

Facet Chare

constructor()

request_data()

VF Chare

constructor()

on_data_recvd()

Aggregator Chare

constructor()

on_row_ready()

Driver Chare

constructor()

on_data_built() DAG

Reduction

Reduction

Mesh
File

Results

0	
200	
400	
600	
800	
1000	
1200	
1400	
1600	
1800	
2000	

0	 5	 10	 15	 20	 25	

M
em

or
y	
(M

B)
	

Process	count	

Memory	Usage	under	Ar6ficial	Load	

100	Facets	 250	Facets	 500	Facets	 1000	Facets	

n facets
p processes

In this implementation, each chare corresponds to a single face or a single VF. An
improved but more complex implementation would instead have each chare responsible
for a patch of facets and VFs.

A
ggregator C

hares
Facet i

Fa
ce

t i

References and Acknowledgements
•  Glass,	 Micheal	 W.	 “CHAPARRAL:	 A	 Library	 for	 Solving	 Large	 Enclosure	 RadiaKon	 Heat	

Transfer	Problems.”	Sandia	Na(onal	Laboratories	
•  Charm++, http://charm.cs.illinois.edu/research/charm

Thanks to:
•  Neil Carlson (CCS-2) for his guidance with Chaparral and view factors as well as for

his design suggestions,
•  Jozsef Bakosi (CCS-2) for his invaluable help with learning and using Charm++,
•  The ASC Integrated Codes Program for funding,
•  The LANL Information Science & Technology Institute (ISTI) Parallel Computing

Summer Research Internship (PCSRI).

THIS	WORK	WAS	 CARRIED	 OUT	 UNDER	 THE	 AUSPICES	 OF	 THE	 NATIONAL	 NUCLEAR	 SECURITY	 ADMINISTRATION	 OF	 THE	 US	
DEPARTMENT	OF	ENERGY	AT	LOS	ALAMOS	NATIONAL	LABORATORY	SUPPORTED	BY	CONTRACT	NO	DE-AC52-06NA25396	

.	.	.	

.	.	.	

.	.	.	

.	.	.	

wrosenberger@lanl.gov	

